lunes, 25 de marzo de 2013

Teoremas de la suma y diferencia de ángulos

Pueden demostrarse según la Fórmula de Euler o mediante la proyección de ángulos consecutivos. La identidad de la tangente surge del cociente entre coseno y seno, y las restantes de la recíproca correspondiente.
 \sin(x \pm y) = \sin(x) \cos(y) \pm \cos(x) \sin(y)
 \cos(x \pm y) = \cos(x) \cos(y) \mp \sin(x) \sin(y)
 \tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}
De lo que se sigue para determinados ángulos suplementarios:
 \sin(\pi \pm x) = \mp\sin(x)
 \cos(\pi \pm x) = -\cos(x)
 \tan(\pi \pm x) = \pm\tan(x)
 \csc(\pi \pm x) = \mp\csc(x)

Para ángulos complementarios:
 \sin\left(\frac{\pi}{2} - x\right) = \cos(x)
 \cos\left(\frac{\pi}{2} - x\right) = \sin(x)
 \tan\left(\frac{\pi}{2} - x\right) = \cot(x)
 \csc\left(\frac{\pi}{2} - x\right) = \sec(x)
 \sec\left(\frac{\pi}{2} - x\right) = \csc(x)
 \cot\left(\frac{\pi}{2} - x\right) = \tan(x)
Para ángulos opuestos:
 \sin\left(-x\right) = -\sin\left(x\right)
 \cos\left(-x\right) = \cos\left(x\right)
 \tan\left(-x\right) = -\tan\left(x\right)
 \csc\left(-x\right) = -\csc\left(x\right)
 \sec\left(-x\right) = \sec\left(x\right)
 \cot\left(-x\right) = -\cot\left(x\right)

No hay comentarios:

Publicar un comentario